Skip to main content

Memory management idioms

This time lets briefly look at three structural idioms discussed in Coplien's book, Advanced C++ programming styles and idioms.

Handle and Body: Handle and body are logically one entity but physically two. This separation allows handle to be much smaller in size than the body. Handle and body are both classes. Because they are logically same entity, there are several consequences: handle can be passed instead of body wherever body is required (efficient). To be logically same, handle and body needs to have exactly same interface. Any addition to body class interface needs a change in the handle class (maintenance). Handle class delegates all function calls to the body. (extra function call). Handle manages memory and the body manages the abstraction. This type of structure is typically used in reference counting. Though hidden from the client, body class pollutes the global namespace. Important thing to note here is that though, both the classes are in global namespace the instance of the body class is only accesible from within the handle class. body class is all private and handle is a friend of body. Note that both handle and body need to be classes.

Then why put the body class in the global namespace? Lets put it inside the handle class. Call this type of structure Envelope/Letter class idiom.

e.g.
class String_Reprentation { char str[5000]; long count; } (Body)
class String { String_Reprentation *rep; } (Handle)

The problem of mirroring interfaces in the handle and body classes mentioned above can be solved using a cool C++ feature: operator ->. Define an overloaded dereference operator (arrow operator) in the handle class which returns a pointer to body.

String_Representation * String::operator -> ();

Note that most new string operations can be implemented as String_Representation member functions: the handle class String gets these operations automatically throught overloaded arrow operator. Add reference counting to it for more flavor. Call it Counted Pointer idiom! Also note that String_Representation interface can't be private.

More info: http://users.rcn.com/jcoplien/Patterns/C++Idioms/EuroPLoP98.html

Comments

Popular Content

Unit Testing C++ Templates and Mock Injection Using Traits

Unit testing your template code comes up from time to time. (You test your templates, right?) Some templates are easy to test. No others. Sometimes it's not clear how to about injecting mock code into the template code that's under test. I've seen several reasons why code injection becomes challenging. Here I've outlined some examples below with roughly increasing code injection difficulty. Template accepts a type argument and an object of the same type by reference in constructor Template accepts a type argument. Makes a copy of the constructor argument or simply does not take one Template accepts a type argument and instantiates multiple interrelated templates without virtual functions Lets start with the easy ones. Template accepts a type argument and an object of the same type by reference in constructor This one appears straight-forward because the unit test simply instantiates the template under test with a mock type. Some assertion might be tested in

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together. It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array? int native[3][4]; std::array<std::array<int, 3>, 4> arr; No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is: std::array<std::array<int, 4>, 3> arr; That's quite annoying for

Covariance and Contravariance in C++ Standard Library

Covariance and Contravariance are concepts that come up often as you go deeper into generic programming. While designing a language that supports parametric polymorphism (e.g., templates in C++, generics in Java, C#), the language designer has a choice between Invariance, Covariance, and Contravariance when dealing with generic types. C++'s choice is "invariance". Let's look at an example. struct Vehicle {}; struct Car : Vehicle {}; std::vector<Vehicle *> vehicles; std::vector<Car *> cars; vehicles = cars; // Does not compile The above program does not compile because C++ templates are invariant. Of course, each time a C++ template is instantiated, the compiler creates a brand new type that uniquely represents that instantiation. Any other type to the same template creates another unique type that has nothing to do with the earlier one. Any two unrelated user-defined types in C++ can't be assigned to each-other by default. You have to provide a