Skip to main content

Curiously Recurring Template Pattern (CRTP)

It is a C++ idiom in which inheritance and template type parameters are cleverly integrated to generate flexible types at compile-time. In CRTP, a template class inherits from its own template parameter. For example,

template <typename Base>
class MixinOne : public Base {};

This technique is also one of the ways of using "Mixins". Here class Mixin helps to "mix in" some useful functionality into any class type Base. For example, class Mixin can make class Base a singleton. Complete code example is here. In this case of CRTP, a hierarchy (a new class plus inheritance relationship) is created when Mixin template is instantiated. Thus hierarchy creation is differed till the instantiation of the template. This is pretty cool!

Moreover, CRTP can appear in a different fashion in which a class passes itself as a template parameter to its base class. For example,

class Derived: public MixinTwo<Derived> {};

The non-template class Derived inherits interface/structure (hopefully customized for itself) from Mixin class. In this case of CRTP, the class hierarchy is "created" when Derived class is coded unlike in the earlier case where, class hierarchy is "created" when template is instantiated.

This curious name to the idiom was given by James Coplien. Also see this for a complete example of the technique.

Comments

Anonymous said…
I can understand how the pattern works, but man it is one screwd-up programming technique, template programmers should really get out more and live life.
Anonymous said…
Kindly delete that above comment and this one to whomever owns this blog, that post was made by a coworker who is stumped at a programming problem, please, thanks.
Unknown said…
The article

Building More Flexible Types With Mixins
Applying the Curiously Recurring Template Pattern
By Christopher Diggins

http://devnet.developerpipeline.com/documents/s=9843/cuj0601diggins/

is now at:

http://www.ddj.com/cpp/184402056

Cheers

Popular Content

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together. It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array? int native[3][4]; std::array<std::array<int, 3>, 4> arr; No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is: std::array<std::array<int, 4>, 3> arr; That's quite annoying for...

Review of Manning's Functional Programming in C++

Last year I reviewed the pre-print manuscript of Manning's Functional Programming in C++ written by Ivan Čukić. I really enjoyed reading the book. I enthusiastically support that the book Offers precise, easy-to-understand, and engaging explanations of functional concepts. Who is this book for This book expects a reasonable working knowledge of C++, its modern syntax, and semantics from the readers. Therefore, reading this book might require a companion book for C++ beginners. I think that’s fair because FP is an advanced topic. C++ is getting more and more powerful day by day. While there are many FP topics that could be discussed in such a book, I like the practicality of the topics selected in this book. Here's the table of contents at a glance. This is a solid coverage of functional programming concepts to get a determined programmer going from zero-to-sixty in a matter of weeks. Others have shared their thoughts on this book as well. See Rangarajan Krishnamo...

Covariance and Contravariance in C++ Standard Library

Covariance and Contravariance are concepts that come up often as you go deeper into generic programming. While designing a language that supports parametric polymorphism (e.g., templates in C++, generics in Java, C#), the language designer has a choice between Invariance, Covariance, and Contravariance when dealing with generic types. C++'s choice is "invariance". Let's look at an example. struct Vehicle {}; struct Car : Vehicle {}; std::vector<Vehicle *> vehicles; std::vector<Car *> cars; vehicles = cars; // Does not compile The above program does not compile because C++ templates are invariant. Of course, each time a C++ template is instantiated, the compiler creates a brand new type that uniquely represents that instantiation. Any other type to the same template creates another unique type that has nothing to do with the earlier one. Any two unrelated user-defined types in C++ can't be assigned to each-other by default. You have to provide a...