Skip to main content

What is a "thunk"?

A "thunk" appears to be an overloaded term in computer science. Use of the word "thunk" goes back to Algol 60 implementation. In general, as I understand it, thunk is a function which is used to replace something. More often than not, it is auto-generated. This "something" could be an expression (in a programming language) or an address.

In programming language world, a known usecase is call-by-name. The mechanism of dynamic linking (.DLL/.so files) uses local thunks to invoke dynamic linker at run-time and replace the thunk with the actual function for all the later invocations of the function. Please see how this technique can be exploited to modify program behavior at run-time.

In the C++ world, transparent replacement of addresses is very useful. An example is, adjusting pointers when virtual functions are invoked using one of the many possible base classes of the derived most class when multiple inheritance is involved. Depending upon which base class is used, the "this" pointer is adjusted using thunk methods to point at the right position in the object.

Helpful source: http://en.wikipedia.org/wiki/Thunk

Comments

Popular posts from this blog

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together.

It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array?

int native[3][4];
std::array<std::array<int, 3>, 4> arr;

No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is:

std::array<std::array<int, 4>, 3> arr;

That's quite annoying for two r…

Folding Monadic Functions

In the previous two blog posts (Understanding Fold Expressions and Folding Functions) we looked at the basic usage of C++17 fold expressions and how simple functions can be folded to create a composite one. We’ll continue our stride and see how "embellished" functions may be composed in fold expressions.

First, let me define what I mean by embellished functions. Instead of just returning a simple value, these functions are going to return a generic container of the desired value. The choice of container is very broad but not arbitrary. There are some constraints on the container and once you select a generic container, all functions must return values of the same container. Let's begin with std::vector.
// Hide the allocator template argument of std::vector. // It causes problems and is irrelevant here. template <class T> struct Vector : std::vector<T> {}; struct Continent { }; struct Country { }; struct State { }; struct City { }; auto get_countries…

Covariance and Contravariance in C++ Standard Library

Covariance and Contravariance are concepts that come up often as you go deeper into generic programming. While designing a language that supports parametric polymorphism (e.g., templates in C++, generics in Java, C#), the language designer has a choice between Invariance, Covariance, and Contravariance when dealing with generic types. C++'s choice is "invariance". Let's look at an example.
struct Vehicle {}; struct Car : Vehicle {}; std::vector<Vehicle *> vehicles; std::vector<Car *> cars; vehicles = cars; // Does not compile The above program does not compile because C++ templates are invariant. Of course, each time a C++ template is instantiated, the compiler creates a brand new type that uniquely represents that instantiation. Any other type to the same template creates another unique type that has nothing to do with the earlier one. Any two unrelated user-defined types in C++ can't be assigned to each-other by default. You have to provide a c…