Skip to main content

Counted Method Chaining

I built a fun set of classes using C++ template meta-programming technique to count the number of times a member method of a class is invoked in a chain. These template classes implement a meta-programming technique called Counted Method Chaining. It counts the number of times a member function is called at compile-time and does not let programmer invoke it more than a used defiend limit. The limit is passed as a integer template parameter to the class to which to method belongs. It gives a compile time error only when method chaining is used. Otherwise it throws and exception. These set of classes use the C++ technique of co-variant return types.

/// @brief A genereral case of the template where add function
/// is public and therefore, it can be invoked.
template <unsigned int C>
class Base : public Base <C-1>
{
public:
virtual Base <C-1> & add (void const *, size_t length) = 0;
};

/// @brief The special case of the template when C (count) becomes zero.
/// The add member function is private and therefore, can't be
/// invoked by the client of the class resulting in a compile time error.
template <>
class Base <0>
{
public:
virtual ~Base () {}
private:
virtual Base <0> & add (void const *, size_t length) = 0;
};

template <unsigned int SIZE>
class IOV_Helper : public Base <SIZE-1>
{
public:
/// @brief Constructor: Makes a IOV_Helper object.
IOV_Helper () : count_(0) {}

/// @brief Adds a buffer pointer and its size to be sent over network later
/// using gather write technique.
Base <SIZE-1> & add (void const *ptr, size_t length)
{
if (0 == length)
return *this;

if (count_ >= SIZE)
throw count_ + 1;

iov_[count_].iov_base = const_cast <void *> (ptr);
iov_[count_].iov_len = length;
++count_;

return *this;
}

/// @brief Returns the number of I/O vectors populated currently
unsigned int size () { return count_; }

/// @brief Sends the data in the I/O vectors out to a remote peer.
int send (ACE_SOCK_Stream &out)
{
return out.sendv_n (iov_, count_);
}

private:
iovec iov_[SIZE]; /// @brief I/O vectors array.
unsigned int count_; /// @brief count of the number vectors added.
};

int main (void)
{
IOV_Helper <2> sender; /// Here 2 is the maximum limit of method chaining.
char * data = new char[20];
sender.add(data, 20).add(data, 20); /// OK
sender.add(data, 20).add(data, 20).add(data, 20); /// Compile-time Error
return 0;
}

Comments

Sudarshan said…
Long time no posts how are you?
Check out this blog
http://pkisensee.spaces.live.com/

interesting C++ information

Popular Content

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together. It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array? int native[3][4]; std::array<std::array<int, 3>, 4> arr; No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is: std::array<std::array<int, 4>, 3> arr; That's quite annoying for

Unit Testing C++ Templates and Mock Injection Using Traits

Unit testing your template code comes up from time to time. (You test your templates, right?) Some templates are easy to test. No others. Sometimes it's not clear how to about injecting mock code into the template code that's under test. I've seen several reasons why code injection becomes challenging. Here I've outlined some examples below with roughly increasing code injection difficulty. Template accepts a type argument and an object of the same type by reference in constructor Template accepts a type argument. Makes a copy of the constructor argument or simply does not take one Template accepts a type argument and instantiates multiple interrelated templates without virtual functions Lets start with the easy ones. Template accepts a type argument and an object of the same type by reference in constructor This one appears straight-forward because the unit test simply instantiates the template under test with a mock type. Some assertion might be tested in

Want speed? Use constexpr meta-programming!

It's official: C++11 has two meta-programming languages embedded in it! One is based on templates and other one using constexpr . Templates have been extensively used for meta-programming in C++03. C++11 now gives you one more option of writing compile-time meta-programs using constexpr . The capabilities differ, however. The meta-programming language that uses templates was discovered accidently and since then countless techniques have been developed. It is a pure functional language which allows you to manipulate compile-time integral literals and types but not floating point literals. Most people find the syntax of template meta-programming quite abominable because meta-functions must be implemented as structures and nested typedefs. Compile-time performance is also a pain point for this language feature. The generalized constant expressions (constexpr for short) feature allows C++11 compiler to peek into the implementation of a function (even classes) and perform optimization