Skip to main content

C++/C++11 Track @ Silicon Valley Code Camp 2012

For the first time in 7 years, 2012 Silicon Valley Code Camp will have a track dedicated to C++ and C++11. Code Camp is a conference of developers, by developers, for developers. Attendance is free! This year, the number of attendees is expected to exceed 2200 to attend 223 sessions on a variety of topics related to software technology. Code Camp will be held @ Foothill College on Oct. 6th and 7th (weekend) in Silicon Valley.

CodeCamp at FootHill College.


C++ is clearly one of the big things at Code Camp this year. The track has sessions on exception-safe coding, generic programming, logic programming, Windows 8 development, and the Clang compiler. There are sessions focused on C++11 too. Purely on the language side, two sessions on rvalue references, move semantics, perfect forwarding, and modern idioms of using them in your programs should whet the appetite of any C++11 programmer. On the standard library side, how about C++11 threading library!

On Sunday, I'll present two sessions: "C++11 Idioms" and "Using Data-centric Publish/Subscribe for Request-Reply Communication". The first one is focused on rvalue references, move semantics, and perfect forwarding. If you have been following this blog, you might get glimpse of what's coming. However, more than a third of the talk will be about techniques that are never discussed on this blog. The second talk will discuss how you can implement the request-reply communication pattern using Data Distribution Service (DDS) API, which is fundamentally publish/subscribe.

So far, the idioms session is among the top sessions in the C++ track. So, guys, thanks for showing so much interest; and keep it up! Just click "Will Attend" if you plan to. Remember, it is free! 

Comments

Anonymous said…
www.computerarea96.blogspot.com
Anonymous said…
nice post
www.computerarea96.blogspot.com

Popular posts from this blog

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together.

It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array?

int native[3][4];
std::array<std::array<int, 3>, 4> arr;

No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is:

std::array<std::array<int, 4>, 3> arr;

That's quite annoying for two r…

Understanding Fold Expressions

C++17 has an interesting new feature called fold expressions. Fold expressions offer a compact syntax to apply a binary operation to the elements of a parameter pack. Here’s an example. template <typename... Args> auto addall(Args... args) { return (... + args); } addall(1,2,3,4,5); // returns 15. This particular example is a unary left fold. It's equivalent to ((((1+2)+3)+4)+5). It reduces/folds the parameter pack of integers into a single integer by applying the binary operator successively. It's unary because it does not explicitly specify an init (a.k.a. identity) argument. So, let add it. template <typename... Args> auto addall(Args... args) { return (0 + ... + args); } addall(1,2,3,4,5); // returns 15. This version of addall is a binary left fold. The init argument is 0 and it's redundant (in this case). That's because this fold expression is equivalent to (((((0+1)+2)+3)+4)+5). Explicit identity elements will come in handy a little la…

Folding Monadic Functions

In the previous two blog posts (Understanding Fold Expressions and Folding Functions) we looked at the basic usage of C++17 fold expressions and how simple functions can be folded to create a composite one. We’ll continue our stride and see how "embellished" functions may be composed in fold expressions.

First, let me define what I mean by embellished functions. Instead of just returning a simple value, these functions are going to return a generic container of the desired value. The choice of container is very broad but not arbitrary. There are some constraints on the container and once you select a generic container, all functions must return values of the same container. Let's begin with std::vector.
// Hide the allocator template argument of std::vector. // It causes problems and is irrelevant here. template <class T> struct Vector : std::vector<T> {}; struct Continent { }; struct Country { }; struct State { }; struct City { }; auto get_countries…