Slides of my Silicon Valley Code Camp (2013) talk are now available. If you attended this session in person please evaluate it. I take feedback/comments seriously!
Abstract: When it comes to sending data across a network, applications send either binary or self-describing data (XML). Both approaches have merits. Data Distribution Service (DDS) combines the best of both in what’s called “data-centric messaging”. DDS shares the type description once, upfront, and later on sends binary data that meets the type description. You typically use IDL or XSD to specify the types and run them through a code generator for type-safe wrapper APIs for your application in your programming language. Simple and fast! As it turns out, however, C++11 bends the rules once again. In this presentation you will learn about a template-based C++11 messaging library that gives the DDS code generator a run for its money. The types and objects in your C++11 application are mapped to standard DDS X-Types type descriptions and serialized format, respectively, using template meta-programming. If you have never heard about SFINAE you won’t stop talking about it after you see "overloading in overdrive" in this presentation. What’s more? I will share my newfound hatred for std::vector of bool/enums. This presentation will cover DDS-XTypes, DDS_TypeCode, DDS_DynamicData, STL, type_traits, Boost Fusion, and overloading with enable_if (lots and lots of it!).
Unit testing your template code comes up from time to time. (You test your templates, right?) Some templates are easy to test. No others. Sometimes it's not clear how to about injecting mock code into the template code that's under test. I've seen several reasons why code injection becomes challenging. Here I've outlined some examples below with roughly increasing code injection difficulty. Template accepts a type argument and an object of the same type by reference in constructor Template accepts a type argument. Makes a copy of the constructor argument or simply does not take one Template accepts a type argument and instantiates multiple interrelated templates without virtual functions Lets start with the easy ones. Template accepts a type argument and an object of the same type by reference in constructor This one appears straight-forward because the unit test simply instantiates the template under test with a mock type. Some assertion might be tested in
Comments
free advertisement|guest posting
Leads|SEO tips