Skip to main content

Changing C++ function default arguments

In C++, default arguments of global scope functions can be changed easily.

Typically we use a constant expression as a default argument. C++ supports static variables as well as a constant expression for a default argument. We can also redeclare a function signature in a new scope with a different default value.

Default arguments are implemented as global static variables. Therefore, same effect can be achieved if we assign a differnt value to the static varibale. Following code shows this interesting feature.

******************************************************************************
#include
#include
#include

static int para=200;

void g(int x=para); // default argument is a static variable.
void f(int x=7); // default argument implemented in terms of some static varible.

int main(void)
{
void f(int x=70); // redeclaring function ::f

f(); // prints f70

g(); // prints g200
para=500;
g(); // prints g500

{
void f(int x=700); // redeclaring function f
f(); // prints f700
::g(); // prints g500
}

::f(); // prints f7 !!!!
// Note that earlier f() call in the same scope gave us f70!!
// This shows that :: (scope resolution operator) forces compiler to
// use global declaration with global signature's default value.

{
void g(int x=100); // redeclaring function g
g(); // prints g100!!!
std::cout << "para = " << para << std::endl; // prints para = 500
// Note that though value of para is unchaged local scope
// changes value of default argument.
}
::g(); // prints g500
return 0;
}

void f(int x)
{
std::cout << "f" << x << std::endl;
}

void g(int x)
{
std::cout << "g" << x << std::endl;
}

******************************************************************************

As a programming guideline, if you need to change the value of default argument, either by redelcaring the function signature or reassignment of static variable, you better not make it a default argument and keep it a simple argument.

Comments

Anonymous said…
Good approach, if you want to confuse your colleagues.
Anonymous said…
Creative blog. I just kept looking at it over and
over! Im always looking for blogs like this!
golden slot mobile

Popular Content

Unit Testing C++ Templates and Mock Injection Using Traits

Unit testing your template code comes up from time to time. (You test your templates, right?) Some templates are easy to test. No others. Sometimes it's not clear how to about injecting mock code into the template code that's under test. I've seen several reasons why code injection becomes challenging. Here I've outlined some examples below with roughly increasing code injection difficulty. Template accepts a type argument and an object of the same type by reference in constructor Template accepts a type argument. Makes a copy of the constructor argument or simply does not take one Template accepts a type argument and instantiates multiple interrelated templates without virtual functions Lets start with the easy ones. Template accepts a type argument and an object of the same type by reference in constructor This one appears straight-forward because the unit test simply instantiates the template under test with a mock type. Some assertion might be tested in

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together. It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array? int native[3][4]; std::array<std::array<int, 3>, 4> arr; No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is: std::array<std::array<int, 4>, 3> arr; That's quite annoying for

Covariance and Contravariance in C++ Standard Library

Covariance and Contravariance are concepts that come up often as you go deeper into generic programming. While designing a language that supports parametric polymorphism (e.g., templates in C++, generics in Java, C#), the language designer has a choice between Invariance, Covariance, and Contravariance when dealing with generic types. C++'s choice is "invariance". Let's look at an example. struct Vehicle {}; struct Car : Vehicle {}; std::vector<Vehicle *> vehicles; std::vector<Car *> cars; vehicles = cars; // Does not compile The above program does not compile because C++ templates are invariant. Of course, each time a C++ template is instantiated, the compiler creates a brand new type that uniquely represents that instantiation. Any other type to the same template creates another unique type that has nothing to do with the earlier one. Any two unrelated user-defined types in C++ can't be assigned to each-other by default. You have to provide a