Skip to main content

Double Application Of Smart Pointers

In my reading, I came across a cool, little technique in C++ which allows us to invoke a pre-method and a post-method automatically when a member method of the class is called. It makes use of so called "Double Application Of Smart Pointers" (see the second bullet).

This technique might be useful to implement different popular things such as pre-conditions and post-conditions, the "Monitor Object" pattern (POSA2), pointcut models in AOP, the Decorator pattern (GOF) and also the Execute-Around-Method pattern.

Comments

Tareq Hasan said…
Midsize business or non-profit organization should decide if one-vendor solution would be appropriate and the associated risk acceptable. In our opinion, balancing the risk of one-vendor-approach is not economically feasible and should be avoided. This means that you need to decide if you plan to be Microsoft-oriented or Java/Unix/Linux/Oracle oriented. See more programming homework help

Popular Content

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together. It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array? int native[3][4]; std::array<std::array<int, 3>, 4> arr; No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is: std::array<std::array<int, 4>, 3> arr; That's quite annoying for...

Review of Manning's Functional Programming in C++

Last year I reviewed the pre-print manuscript of Manning's Functional Programming in C++ written by Ivan Čukić. I really enjoyed reading the book. I enthusiastically support that the book Offers precise, easy-to-understand, and engaging explanations of functional concepts. Who is this book for This book expects a reasonable working knowledge of C++, its modern syntax, and semantics from the readers. Therefore, reading this book might require a companion book for C++ beginners. I think that’s fair because FP is an advanced topic. C++ is getting more and more powerful day by day. While there are many FP topics that could be discussed in such a book, I like the practicality of the topics selected in this book. Here's the table of contents at a glance. This is a solid coverage of functional programming concepts to get a determined programmer going from zero-to-sixty in a matter of weeks. Others have shared their thoughts on this book as well. See Rangarajan Krishnamo...

Covariance and Contravariance in C++ Standard Library

Covariance and Contravariance are concepts that come up often as you go deeper into generic programming. While designing a language that supports parametric polymorphism (e.g., templates in C++, generics in Java, C#), the language designer has a choice between Invariance, Covariance, and Contravariance when dealing with generic types. C++'s choice is "invariance". Let's look at an example. struct Vehicle {}; struct Car : Vehicle {}; std::vector<Vehicle *> vehicles; std::vector<Car *> cars; vehicles = cars; // Does not compile The above program does not compile because C++ templates are invariant. Of course, each time a C++ template is instantiated, the compiler creates a brand new type that uniquely represents that instantiation. Any other type to the same template creates another unique type that has nothing to do with the earlier one. Any two unrelated user-defined types in C++ can't be assigned to each-other by default. You have to provide a...