Skip to main content

Publications by C++ experts

Articles by experts are saught after the most. Therefore, here are the links to the articles written by some of my favorite authors (in no particular order).

Comments

Anonymous said…
Robert Martin link appears broken
Comptrol said…
Hi brother, greeetings from Turkey.

I think you should add stanley lippman in that list as well-although he hasn't written for a long time.

his articles:

http://msdn.microsoft.com/en-us/magazine/cc159481.aspx

and his blog, consisting of his old articles:

http://blogs.msdn.com/slippman/

keep up the good work, you are one of the few people encouraging me to put up with c++ :P
Sumant said…
Hi,
Thanks for your encouragement! Adding Stan Lippman in the list makes perfect sense. I'm wondering why his name did not pop up in my head.

One very good reason to stay up-to-date with latest C++ is the upcoming C++09 standard (http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2565.html) which will take C++ to a whole new level of power and complexity!

- Sumant.
Anonymous said…
Hi,
Thanks for your encouragement! Adding Stan Lippman in the list makes perfect sense. I'm wondering why his name did not pop up in my head.
gclub

Popular Content

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together. It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array? int native[3][4]; std::array<std::array<int, 3>, 4> arr; No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is: std::array<std::array<int, 4>, 3> arr; That's quite annoying for...

Review of Manning's Functional Programming in C++

Last year I reviewed the pre-print manuscript of Manning's Functional Programming in C++ written by Ivan Čukić. I really enjoyed reading the book. I enthusiastically support that the book Offers precise, easy-to-understand, and engaging explanations of functional concepts. Who is this book for This book expects a reasonable working knowledge of C++, its modern syntax, and semantics from the readers. Therefore, reading this book might require a companion book for C++ beginners. I think that’s fair because FP is an advanced topic. C++ is getting more and more powerful day by day. While there are many FP topics that could be discussed in such a book, I like the practicality of the topics selected in this book. Here's the table of contents at a glance. This is a solid coverage of functional programming concepts to get a determined programmer going from zero-to-sixty in a matter of weeks. Others have shared their thoughts on this book as well. See Rangarajan Krishnamo...

Covariance and Contravariance in C++ Standard Library

Covariance and Contravariance are concepts that come up often as you go deeper into generic programming. While designing a language that supports parametric polymorphism (e.g., templates in C++, generics in Java, C#), the language designer has a choice between Invariance, Covariance, and Contravariance when dealing with generic types. C++'s choice is "invariance". Let's look at an example. struct Vehicle {}; struct Car : Vehicle {}; std::vector<Vehicle *> vehicles; std::vector<Car *> cars; vehicles = cars; // Does not compile The above program does not compile because C++ templates are invariant. Of course, each time a C++ template is instantiated, the compiler creates a brand new type that uniquely represents that instantiation. Any other type to the same template creates another unique type that has nothing to do with the earlier one. Any two unrelated user-defined types in C++ can't be assigned to each-other by default. You have to provide a...