Skip to main content

Non-Virtual Interface (NVI) idiom and the design intent

Assuming that the philosophy of Non-Virtual Interface (NVI) idiom is strictly adhered I came up with a table that summarizes the design intent in terms of access modifiers and virtuality. Strict adherence of NVI allows separation of the interface of a class into two distinct interfaces: client interface (public non-virtual) and subclass interface (protected virtual/non-virtual). Such a structure helps mitigate the Fragile Base Class (FBC) Interface problem if discipline is followed. Its only downside is a little bit of code bloat. More about this approach of resolving FBC can be found here.





























  non-virtual virtual but not pure pure virtual without body pure virtual with body
Public Clients expect substitutability. Extension points are
encapsulated.  Subclasses should stay away from this if an equivalent
protected function using NVI is given.
Clients expect substitutability. Extension points are
visible. Subclasses can optionally extend  them but assuming NVI is
place, subclasses should not reuse it.
Substitutability is mandatory as base class itself can't be
instantiated.
Substitutability is mandatory as base class itself can't be
instantiated. Subclasses should call the method in the base. e.g.,
destructor.
Protected For the purpose of reuse only by subclasses. An interface
for subclasses. Beware of the Fragile Base Class (FBC) interface problem.
An optional extension point for subclasses. FBC applies
here.
A mandatory extension point for subclasses A mandatory extension point for subclasses and it should
call the method in the base. e.g., destructor.
Private Clients as well as subclasses have to live with it. Like
final keyword in Java. Not for reuse. Top secret
of a class.
If you happen to know the secret, it is not for (re)use but
you can risk extending it. Don't scream if the the treasure evaporates
tomorrow.
If you happen to know the secret, it is not for (re)use but
you must risk extending it! Surprises for tomorrow if base is updated.
Ditto as for pure virtual without body


The structure of NVI is similar to the Thread-safe Interface pattern. The purpose of public methods in thread-safe interface is to acquire lock and let the helper functions do the real job without worrying about locking. In NVI, the public non-virtual methods do a simple job of dynamic dispatching of protected virtual helper functions.

Comments

Popular Content

Review of Manning's Functional Programming in C++

Last year I reviewed the pre-print manuscript of Manning's Functional Programming in C++ written by Ivan Čukić. I really enjoyed reading the book. I enthusiastically support that the book Offers precise, easy-to-understand, and engaging explanations of functional concepts. Who is this book for This book expects a reasonable working knowledge of C++, its modern syntax, and semantics from the readers. Therefore, reading this book might require a companion book for C++ beginners. I think that’s fair because FP is an advanced topic. C++ is getting more and more powerful day by day. While there are many FP topics that could be discussed in such a book, I like the practicality of the topics selected in this book. Here's the table of contents at a glance. This is a solid coverage of functional programming concepts to get a determined programmer going from zero-to-sixty in a matter of weeks. Others have shared their thoughts on this book as well. See Rangarajan Krishnamo...

Unit Testing C++ Templates and Mock Injection Using Traits

Unit testing your template code comes up from time to time. (You test your templates, right?) Some templates are easy to test. No others. Sometimes it's not clear how to about injecting mock code into the template code that's under test. I've seen several reasons why code injection becomes challenging. Here I've outlined some examples below with roughly increasing code injection difficulty. Template accepts a type argument and an object of the same type by reference in constructor Template accepts a type argument. Makes a copy of the constructor argument or simply does not take one Template accepts a type argument and instantiates multiple interrelated templates without virtual functions Lets start with the easy ones. Template accepts a type argument and an object of the same type by reference in constructor This one appears straight-forward because the unit test simply instantiates the template under test with a mock type. Some assertion might be tested in...

Covariance and Contravariance in C++ Standard Library

Covariance and Contravariance are concepts that come up often as you go deeper into generic programming. While designing a language that supports parametric polymorphism (e.g., templates in C++, generics in Java, C#), the language designer has a choice between Invariance, Covariance, and Contravariance when dealing with generic types. C++'s choice is "invariance". Let's look at an example. struct Vehicle {}; struct Car : Vehicle {}; std::vector<Vehicle *> vehicles; std::vector<Car *> cars; vehicles = cars; // Does not compile The above program does not compile because C++ templates are invariant. Of course, each time a C++ template is instantiated, the compiler creates a brand new type that uniquely represents that instantiation. Any other type to the same template creates another unique type that has nothing to do with the earlier one. Any two unrelated user-defined types in C++ can't be assigned to each-other by default. You have to provide a...