Skip to main content

Binding std::function to member functions

I realized that std::function can be bound to member functions without requiring the *this object. Consider the following examples.
// std::string::empty is a const function. All variables from e1 to e5 are fine.
std::function<bool(std::string)> e1 = &std::string::empty;
std::function<bool(std::string &)> e2 = &std::string::empty;
std::function<bool(const std::string &)> e3 = &std::string::empty;
std::function<bool(std::string *)> e4 = &std::string::empty;
std::function<bool(const std::string *)> e5 = &std::string::empty;

// std::string::push_back is not a const function. p4 and p5 don't compile.
std::function<void(std::string, char)> p1 = &std::string::push_back;
std::function<void(std::string &, char)> p2 = &std::string::push_back;
std::function<void(std::string *, char)> p3 = &std::string::push_back;

// These two don't compile because push_back is a non-const function 
std::function<void(const std::string &, char)> p4 = &std::string::push_back;
std::function<void(const std::string *, char)> p5 = &std::string::push_back;
I thought I knew how to do that but this time I found that the syntax is a little different than what I had in mind.

I used tho think (incorrectly) that just like function types for free-standing functions, one would create a member-function type. While, it's straight-forward to create function types for free-standing functions, I think it's not possible to create member function types. Don't get me wrong. One can create pointer-to-member-function type just like pointer-to-a-function type. Here's what I mean.
using F = int(const char *); // a function type of a free standing function.
F f = std::atoi; // error because a there are no instances of a function type.
F* fnew = new F(); //error because new can't be applied to a function type.
F* fptr = &std::atoi; // OK. A pointer to a function type is initialized.

// However, there's no function type for member functions
using GPTR = bool (std::string::*)() const; // OK. This is a pointer-to-member-function-type. 
GPTR gptr = &std::string::empty; // OK. This is a pointer to a member function.
string s;
std::cout << (s.*gptr)(); // OK. prints 1
using H = decltype(*gptr); // error. It makes no sense without a std:string object. Illformed.

bool (*x)(const std::string &) = gptr; // error. Incompatible types.
std::function<bool (const std::string &)> fobj = gptr; // OK! Neat!
Therefore, std::function uses the syntax of free-standing function types to bind to pointer to member functions. That's neat.

Comments

harada57 said…
This comment has been removed by the author.

Popular Content

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together. It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array? int native[3][4]; std::array<std::array<int, 3>, 4> arr; No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is: std::array<std::array<int, 4>, 3> arr; That's quite annoying for...

Review of Manning's Functional Programming in C++

Last year I reviewed the pre-print manuscript of Manning's Functional Programming in C++ written by Ivan Čukić. I really enjoyed reading the book. I enthusiastically support that the book Offers precise, easy-to-understand, and engaging explanations of functional concepts. Who is this book for This book expects a reasonable working knowledge of C++, its modern syntax, and semantics from the readers. Therefore, reading this book might require a companion book for C++ beginners. I think that’s fair because FP is an advanced topic. C++ is getting more and more powerful day by day. While there are many FP topics that could be discussed in such a book, I like the practicality of the topics selected in this book. Here's the table of contents at a glance. This is a solid coverage of functional programming concepts to get a determined programmer going from zero-to-sixty in a matter of weeks. Others have shared their thoughts on this book as well. See Rangarajan Krishnamo...

Covariance and Contravariance in C++ Standard Library

Covariance and Contravariance are concepts that come up often as you go deeper into generic programming. While designing a language that supports parametric polymorphism (e.g., templates in C++, generics in Java, C#), the language designer has a choice between Invariance, Covariance, and Contravariance when dealing with generic types. C++'s choice is "invariance". Let's look at an example. struct Vehicle {}; struct Car : Vehicle {}; std::vector<Vehicle *> vehicles; std::vector<Car *> cars; vehicles = cars; // Does not compile The above program does not compile because C++ templates are invariant. Of course, each time a C++ template is instantiated, the compiler creates a brand new type that uniquely represents that instantiation. Any other type to the same template creates another unique type that has nothing to do with the earlier one. Any two unrelated user-defined types in C++ can't be assigned to each-other by default. You have to provide a...